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* Chapter 1

I Introduction
I
* 1.1 Background and Motivation

I The Large Space Structure (LSS) research program was originally formulated in late 1982 in re-
sponse to the increasing concern that performance robustness of Air Force LSS type system would

be inadequate to meet mission objectives. In particular, uncertainties in both system dynamics and
disturbance spectra characterizations (both time varying and stochastic uncertainty) significantly
limit the performance attainable with fixed gain, fixed architecture controls. Therefore, the use

of an adaptive system, where disturbances and/or plant models are identified prior to or during
control, gives systems designers more options for minimizing the risk in achieving performance
objectives.

IThe aim of adaptive control is to implement in real-time and on-line as many as poAsible of the

design functions now performed off-line by the control engineer; to give the controller 'intelligence-.

To realize this aim, both a theory of stability and performance of such inherently nonlinear controls
is essential as well as a technology capable of achieving the implementation.>

The issues of performance sensitivity, robustness, and achievement of very high performance

in an LSS system can be effectively addressed using adaptive algorithms. The need to identify
modal frequencies, for example, in high-performance disturbance rejection systems has been shown
in ACOSS (1981) and VCOSS (1982). The deployment of high-performance optical or RF systems

may require on-line identification of critical modal parameters before full control authority can be
exercised. Parameter sensitivity, manifested by performance degradation or loss of stability (poor
robustness) may be effectively reduced by adaptive feedback mechanizations. Reducing the effects of
on-board disturbance rejection) is particularly important for planned Air Force missions. For these

cases, adaptive control mechanizations are needed to produce the three-to-five orders-of-magnitude
reductions in line-of-sight jitter required by the mission.

Research is essential to identify the performance limitations of adaptive strategies for LSS con-
trol both from theoretical and hardware mechanization viewpoints. The long range goal of this

research program is to establish guidelines for selecting the appropriate strategy, to evaluate per-

formance improvements over fixed-gain mechanizations, and to examine the ,,,hitecture necessary

to produce a practical hardware realization. The initial thrust, however, is t,, ,,,tinue to build a

strorg theoretical foundation without losing sight of the practical implementaI ion issues.

• m un i1



1.2 Research Objectives

The aims of this research study are to extend and develop adaptive control theory and its application
to LSS in several directions. These include:

1. Theoretical Development: The initial emphasis has been on slow adaptation, since this

covers may LSS situations. Later on we will examine fast adaptation. The theory developed

here will provide for:

(a) estimates of robustness, i.e., stability margins vs. performance bounds;

(b) estimates of regions of attraction and rates of parameter convergence to these regions;

(c) extension of the present linear finite dimensional adaptive theory to include nonlinear
and infinite dimensional plants and controller structures; and

(d) extensions to decentralized systems.

2. Parameter Adaptive Algorithms Assess the behavior of different algorithms, including:
gradient, recursive least squares, normalized least mean squares, and nonlinear observer (e.g,

Extended Kalman Filter).

3. Parametric Models: Assess the impact of model choices. In particular we will examine
the effect of explicit and implicit model choices. An explicit model, for example, is a transfer

function whose coefficients are all unknown. In an implicit model transfer function, the

coefficients would be functions of some other parameters. Implicit models usually arise from
physical or experimental data, whereas explicit models are selected for analytical convenience.

4. Adaptive Nonlinear Control: Although our early effort is to study adaptive linear control,
there are may LSS situations where the control is nonlinear, e.g., large angle maneuvers,

slewing. 3

1.3 Current Status

At the present time we stand at the beginning stages of the theoretical development in adaptive
control. The result of recent efforts are contained in the selected papers in the Appendix and the

references therein. A summary of earlier efforts is contained in the recently published textbook

Stability of Adaptive Systems: Passivity and Averaging Analysis, MIT Press, 1986. This publica-

tion is an outgrowth of research supported under this contract and involved a considerable amount

of collaborative effort among several researchers in the field of adaptive control. The text discusses

adaptive systems from the viewpoint of stability theory. The emphasis is on methodology and basic

concepts, rather than on details of adaptive algorithm. The analysis reveals common properties

including causes and mechanisms for instability and the means to counteract them. Conditions

for stability are presented under slow adaptation, where the method of averaging is utilized. In

this latter case the stability result is local, i.e., the initial parametrization and input spectrum is

constrained. Based on this analysis, a conceptual framework is now available to pursue the issues

of slow adaptive control of LSS.

To remove the restrictiveness of slow adaptation requires an understanding of the transient

behavior of adaptive systems. A preliminary investigation is reported in Kosut et al (1986). The

2I
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transient behavior of not-slow or even rapid adaptation is a significant problem in the adaptive
control of LSS, e.g., rapid retargeting.

Another approach to adaptive control is to calibrate (or tune) the controller based on a current
estimate of the LSS model. This involves not just knowing one model, but rather, a model set. This
problem, which we refer to as adaptive calibration, is essentially that of developing a technique of
on-line robust control design from an identified model. Although we have worked on this problem
for some time it is only recently that we have established a theoretical basis for estimating model
error from system identification, Kosut(1987,1988), and this Appendix. This research has raised
many new questions which need to be considered, e.g., what is the appropriate robust controller
parametrization; how does it relate to model parametrization; how to iterate on the data if the
estimate of model error is too large; what are the heuristics for experiment design.I
1.4 Organization of Report

I Throughout the remainder of the report we will discuss our activities this past year in uncertainty
estimation and adaptive nonlinear control.

The Appendix contains a preprint of an extensive journal article on uncertainty estimation, in
particular, on the subject of parameter set estimation. There still remains much to be done in this
area, particularly in regard to control design using models with uncertain parameters. Another

Smajor effort in this area is in the use of fractional representations to aid in system identification
in closed-loop. As the work is still in progress, we postpone discussion of this subject for the next
report, although a conference paper will be presented in 1989 (see below ). There are now many
researchers interested in this approach, and two invited sessions have been organized for the 1989
ACC.

In Chapter 2 we discuss a new research direction, namely, the adaptive control of nonlinear
flexible systems. Here we encounter unique nonlinear phenomena such as limit cycles, bifurcations,
and chaos. An example is presented which demonstrates adaptation of a chaotic system. This area
is still very new, thus, much of our discussion is in the future tense, that is, what we hope can be
done in future research.

I 1.5 Selected Publications to Date

1 1.5.1 Journals and Conferences

R.L. Kosut, "Adaptive Control via Parameter Set Estimation", to appear, Int. J. of Adaptive
Control and Signal Processing, 1989.

R.L. Kosut, "Adaptive Control of a Chaotic System", to appear, Proc. 1988 ACC, Pittsburg, PA,
June 1989.

F. Hanson, R.L. Kosut, and G.F. Franklin, "Closed-Loop System Identification via the Fractional
Representation: Experiment Design and Unmodeled Dynamics" , to appear, Proc. 1988
ACC, Pittsburg, PA, June 1989.

R.L. Kosut, "On The Use of The Method of Averaging for the Stability Analysis of Adaptive
Linear Control Systems", Proc. IEEE CDC, Los Angeles, CA, Dec. 1987.
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I
R.L. Kosut, "Conditions for Convergence and Divergence of Parameter Adaptive Linear Systems",

Proc. ISCAS 1987, Philda., PA, May, 1987.

R.L. Kosut, "Adaptive Calibration: An approach to Uncertainty Modeling and On-Line Robust
Control Design", Proc. 25th IEEE CDC, Athens, Greece, Dec. 1986. I

R.L. Kosut, "Towards an On-Line Procedure for Automated Robust Control Design: The Adaptive
Calibration Problem", presented at 1986 ACC, June 1986.

R.L. Kosut,' I.M.Y. Mareels, B.D.O. Anderson, R.R. Bitmead, and C.R. Johnson, Jr., "Transient
Analysis of Adaptive Control", submitted to IFAC 10th World Congress, Munich, Germany,
July 1987.

R.L. Kosut,' and R.R. Bitmead, "Fixed-Point Theorems for Stability Analysis of Adaptive Sys-
tems", Proc. IFAC Workshop on Adaptive Systems, Lund, Sweden, July 1986.

R.L. Kosut,' and R.R. Bitmead, "Linearization of Adaptive Systems: A Fixed-Point Analy-
sis", submitted, IEEE Trans. on Circuits and Systems; Special Issue on Adaptive Systems,
Sept. 1987.

I.M.Y. Mareels, R.R. Bitmead, M. Gevers, C.R. Johnson, Jr., R.L. Kosut,' and M.A. Poubelie,
"How Exciting Can a Signal Really Be?", to appear, Systems and Control Letters.

R.L. Kosut,l B.D.O. Anderson, and I.M.Y. Mareels, "Stability Theory for Adaptive Systems:
Methods of Averaging and Persistency of Excitation", IEEE Trans. on Aut. Contr., to
appear, Jan. 1987.

B.D.O. Anderson, R.R. Bitmead, C.R. Johnson, Jr., and R.L. Kosut, "Stability Theorems for the
Relaxation of the SPR Condition in Hyperstable Adaptive Systems", IEEE Trans. on Aut.
Contr., submitted.

R.L. Kosut and C.R. Johnson, Jr., "An Input-Output View of Robustness in Adaptive Control",
Automatica: Special Issue on Adaptive Control, 20(5):569-581, Sept. 1984.

R.L. Kosut,2 and B. Friedlander, "Robust Adaptive Control: Conditions for Global Stability",
IEEE Trans. on Aut. Contr., AC-30(7):610-624, July 1985.

1.5.2 Books

B.D.O. Anderson, R.R. Bitmead, C.R. Johnson, Jr., P.V. Kokotovic, R.L. Kosut, I.M.Y. Mareels,
L. Praly, and B.D. Riedle, Stability of Adaptive Systems: Passivity and Averaging Analysis,
MIT Press, 1986.

R.L. Kosut, "Methods of Averaging for Adaptive Systems", Adaptive Systems: Theory and Ap-

plications, Editor: K.S. Narendra, Plenum Press, 1986.

R.L. Kosut and M.G. Lyons, "Issues in Control Design for Large Space Structures", Adaptive

Systems: Theory and Applications, Editor: K.S. Narendra, Plenum Press, 1986.

'Research performed while R.L. Kosut was a Visiting Fellow at the Australian National University.
2 Started under contract F4920-81-C-0051.
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I
R.L. Kosut, "Adaptive Control of Large Space Structures: Uncertainty Estimation and Robust

Control Calibration", Large Space Structures: Dynamics and Control, Editors: S.N. Atluri
and A.K. Amos, Springer-Verlag, 1987.

E. Crawley, R.L. Kosut, and S. Hall, Controlled Structures, in preparation.

1.5.3 Other Related Publications

A.M Pascoal, R.L. Kosut, D. Meldrum, M. Workman, and G.F. Franklin, "Adaptive Time-Optimal
Control of Flexible Structures", to appear, Proc. 1988 ACC, Pittsburg, PA, June 1989.

M.L. Workman, R.L. Kosut, 3 and Franklin, "Adaptive Proximate Time-Optimal Servomecha-
nisms: Continuous-Time Case", Proc. ACC, pp.589-594, June 1987, Minneapolis, MN.

M.L. Workman, R.L. Kosut 3 , and Franklin, "Adaptive Proximate Time-Optimal Servomecha-
nisms: Discrete-Time Case", Proc. CDC, Dec. 1987, Los Angeles, CA.

R.L. Kosut, 4 A. Pascoal, S. Morrison, and M.L. Workman, "Time-Optimal Control of Large Space
Structures", Proc. SPIE, Jan. 1988, Los Angeles, CA.

S. Philips, R.L. Kosut 3 , and G.F. Franklin, "An Averaging Analysis of Discrete-Time Indirect
Adaptive Control", to appear, Proc. ACC, June 1988, Atlanta, GA.I

I
I

I
I
i

I 3Research supported partly by NSF Industry/ University Cooperative Research Program under Grant ECS-
8605646.

Resarch supported by SDIO/IST and managed by AFOSR.
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I
* Chapter 2

I Overview of Research Activities
I

A new objective for this years work is the development of mathematical and computational tools for

the analysis and synthesis of adaptive control of nonlinear flexible systems. With few exceptions,
practically all of recent research in adaptive control is for the case of adaptive linear systems, i.e.,

when the adaptive parameters are held fixed, the resulting system is linear and time-invariant. The

research issues we discuss here arise not only from the nonlinearity introduced by the adaptation,
but the nonlinearities present in the mechanical system itself. Both of these types of nonlinearities

can produce bifurcations and chaotic effects. The principal aims of tl'e this research include un-

derstanding the causes of these phenomena, how to prevent them from occurring, how to minimize
any deleterious effects, and how to recogaiize them from measurements.

3 Nonlinearities in flexible mechanical systems arise from a number of sources including:

* actuator saturation

e friction in bearings or gear trains

* backlash due to gear spacing or slippage

@ kinematic transformations

I .aerodynamicforces

Each of these types of nonlinearities can influence the design of the controller. For example,

efficient use of actuator authority in the presence of saturation motivates time-optimal control.

Friction can be offset by either direct cancelation or dither. The effects of backlash can be handled

with a controller that includes a pre-load. Nonlinearities arising from kinematic transformatioms

or aerodynamic forces can be accomodated by using a controller that either incorporates gain

scheduling as a function of equilibrium points, or else provides a "feedback linearization".

In a general way the control structure depends on the type of plant nonlinearity and some
associated parameters. In many cases the type of nonlinearity as well as these parameter values

are not very well known and prior knowledge is too coarse to guarantee acceptable closed-loop

i performance. Under these conditions, it is necessary to adapt the controller to existing conditions.

An adaptive control system can adjust to uncertainty by tuning controller parameters in such

a way as to minimize model parameter inaccuracies as well as nullifying the effect of inaccurately

7
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I
(or even unknown) nonlinearities. There are many ways to design or configure an adaptive control
system. A "generic" configuration for an adaptive control system is depicted in Figure 2.1. The
control system consists of two processes which make it adaptive, namely: (1) a model para'.-eter
estimator (PE), and (2) a control design rule (D).

Figure 2.1: Generic Adaptive Control System

The parameter estimator (PE) operates oa the input-output data obtained from measurements
(y, u) of the plant system (P) and produces a model parameter estimate 0 E IV. The parameter
estimate is transformed by the control design rule (D) into a controller parameter p E IR, which
is then used in a pre-determined parametric controller structure (C) in feedback with the actual
system (P). I

In general, it is very easy to construct an adaptive system: just connect a design rule and an
estimator together. However, it is very difficult to insure that the resulting adaptive system will
provide acceptable performance. This has been the goal of research in this area for over 30 years.

2.1 History of Adaptive Control Approaches

Over the years, the application of adaptive control has not met with a uniform success. A good ex- I
ample is provided by a brief history of the adaptive control technique developed by Whitaker(1959),
later referred to as the "M.I.T.- Rule". The basic idea is to adjust some controller parameters in
accordance with an instantaneous gradient descent of the squared error between the plant output
and the output of a so-called reference model. Some early applications to flight control were re-
ported to be quite successful e.g., [Whitaker(1959)] and [Osborne et al. (1961)]. Later reported
applications-again to flight control- were not deemed successful, e.g., [Bryson(1977)]. At the same
time as these mixed results were being obtained in the area of flight control applications, several
researchers were reporting good results with applications in process control, engine control, and
ship steering, e.g., [Draper and Li(1951), Astrom et al. (1965,1973)]. Probably because of these
mixed results and lack of theory, other approaches to adaptive control were explored.

8I



I
Analysis via Passivity

One such avenue was announced in a paper by Parks(1966), where the M.I.T.-Rule was "re-3 designed" in such a way that the resulting adaptively controlled system ha a guaranteed stability
property. The idea is to select the reference model so that a certain (closed-loop) transfer function
has a passivity property, specfically, strictly positive real (SPR). 1 With only this SPR information
about this transfer function, the adaptive parameters can always be adjusted towards the minimum
of some objective function. This "SPR-Rule" idea was developed later for more general situations,
e.g., Monopoli(1974), Egardt(1979), and Narendra, Lin, and Vaavani(1980). Further extentions
and expositions along the SPR line can be found in Landau(1979), Goodwin and Sin(1983), and
Kosut and Friedlander(1985).

I
Effect of Unmodeled Dynamics

I Unfortunately, these SPR-Rule algorithms have exactly the same stability problems as the MIT-
Rule algorithms, but only when unmodeled dynamics and disturbances are taken into account.
Although an early account was given by Egardt(1978), this issue was perhaps not fully realized until
the appearance of the work of Rohrs et a!. (1982), which vividly demonstrated the potentially local
unstable nature of adaptive systems by posing a "counter-example" representative of a non-ideal,
but practical, circumstance. The adaptive parameters exhibited the characteristic rapid transient
followed by a steady parameter drift. In this case, however, the parameters did not settle down in
the constant parameter stability set. Thus, once the parameters drifted outside the stability set,
the states of the controlled system became exceedingly large.

Cause of Parameter Drift Instability

In scanning the literature, the earliest reference which contains a rigorous analysis of this instability
phenomena appears to be in a note by James(1971). A Floquet analysis is applied to an MIT-Rule
one-parameter linear adaptive system (adaptive feedforward only) with periodic inputs. The result
is a complex stability-instability boundary revealing multiple resonance phenomena, precisely like

those associated with the Mathieu equation, e.g., Hale(1969). No analysis was undertaken for the
case with adaptive feedback, where the system then is nonlinear.

The work of Ljung(1977) which utilizes a technique of stochastic averaging can perhaps be
said to herald the beginning of a nonlinear analysis technique, but its applicability to adaptive
systems in non-ideal situations was not fully explored at that time. Lyapunov techniques, explored
by Anderson and Johnstone(1983) and Ioannou and Kokotovic(1983), showed that persistently

exciting signals are required to provide a uniform asymptotic stability of the ideal adaptive system,
and this in turn provides robustness to various unmodeled dynamics and disturbances. Input-3 output formulations providing a local stability were developed in Kosut and Johnson(1984) and

Kosut and Anderson(1986); these also needed persistent excitation. In none of these examinations
of the stability properties of adaptive control systems was the precise mechanism for the parameter3 drift instability identified.

3 'Roughly, a transfer function G(s) is SPR if it is stable, and for some constant c > 0, Re[G(jw - c)] _ 0, Vw.

9I



Method of Averaging

The first insights came in a series of papers by Astr6m (1983,1984), which provided an analysis based

on the classical method of averaging of Bogoliubov and Mitropolski(1961). The method requires

slow adaptation and/or small signal magnitudes, and under these conditions Astr6hn was able to
identify the source of the slow drift instability mechanism. This was made precise in a paper by

Riedle and Kokotovic(1984,1985), where they established an average SPR condition which provides

a sharp stability- instability boundary, again in the case of slow adaptation with periodic inputs,

but only for the linearized adaptive system.2 Extentions of this important result to other than

periodic signals and the relation to persistent excitation and unmodeled dynamics is provided in

Kosut, Anderson, and Mareels(1986). Extending the method of averaging to the full adaptive

feedback case has also been developed, e.g., Riedle and Kokotovic(1986), Kosut(1986,1987), and

Bodsen et a[. (19S5).

During this period many of the researchers involved worked more or less in consort. A summary

of these early efforts is contained in Stability of Adaptive Systems: Passivity and Averaging Analysis

(MIT Press) by Anderson et al. (1986). The material in the text represents some modifications

and refinements of the earlier work mentioned above.

Present Status

In summary, we now understand that the primary cause of poor performance in adaptive systems is

that the true plant system is not in the parametric model set upon which the parameter estimator

is designed. At best, the underlying model set is an approximation, perhaps only valid over a

limited range of dynamics. Hence, the states of the parameter estimator cannot be separated from
the states of the plant system. In consequence, adaptive algorithms derived from the passivity

based theory, which requires this strict separation, can be very sensitive to even slight unmodeled

disturbances or high frequency dynamics.

At present, there are basically two research "schools", namely: (1) adapt slowly and insure

robustness, and (2) develop adaptive algorithms which are inherently robust. In our research under I
AFOSR funding we have concentrated on both of these. To accomplish (1) we have applied and

extended the method of averaging analysis which leads to the frequency domain average SPR condi-

tion mentioned before. To accomplish (2) we have developed what we call "uncertainty estimation" I
[cf. Kosut(1987b)]. The idea is to replace the model estimator in Figure 2.1 with one that produces

an estimate together with a measure of uncertainty. The control design rule is replaced with a rule

which accepts a set of uncertainty for design. These approaches to (1) and (2) have been developed I
for linear systems in general and space structures in particular. As part of our future research, we

plan to extend these techniques to nonlinear flexible systems.

In the next few sections we will show how we plan to develop these methods to further our

understanding in the case of nonlinear flexible systems. We first dicsuss the method of averaging

in Section 2.2 and then uncertainty estimation in Section 2.3.

2The average SPR condition is significantly less restrictive than the usual SPR condition because the latter requires
that a certain closed-loop transfer function be positive at all frequencies, whereas the former depends also on a signal I
spectrum and requires that the energy at those frequencies where the transfer is positive should dominate those

frequencies where it is negative. 10

I



* 2.2 Averaging Analysis of Adaptive Control Systems

In this section we review the classical method of averaging, review the current status with respect
to adaptive control of linear systems, and indicate how we plan to extend the ideas to nonlinear
systems. We also provide a motivating example simulation of an adaptively controlled nonlinear
system exhibiting chaos.

2.2.1 Classical Method of Averaging

U The classical method of averaging analysis considers systems of the form

i = 7 f(t,x) (2.1)

where 7y is a positive constant. Under suitable smoothness conditions the solutions of the above
system, for all small y > 0, are approximated to order-I by solutions of the "averaged system"

= -1(Y) (2.2)

where f(y) is the average over t of f(t, y) for fixed y, assuming the average exists. That is,

f(y)= lim f(t, y) dt (2.3)

The details on averaging theory including the smoothness conditions, averageable functions, etc., are
contained in many textbooks, e.g., Bogoliuboff and Mitropolskii (1961), Hale(1969), Sanders and
Verhulst(1987). The usefulness of averaging is that the averaged system, although still nonlinear,
is simpler to analyze. For example, let y. denote an equilibrium of the averaged system, that is, y.
satisfies f(y.)=o

If y. is a stable equilibrium of the averaged system, then there is a stable solution X.(t) of the
original system (2.1) which is contained in an order- -y neighborhood or orbit of y.. Thus, the
original system inherits the stability of the averaged system, which is easily determined from a
linearization about the equilibrium y.. In addition, the region of attraction of the averaged system
to the equilibrium y. is to within order --t of the region of attraction of the original system to the
stable orbit x.(t).

2.2.2 Current Status: Slowly Adapting Linear Systems

The one difficulty in directly applying the classical method of averaging to adaptive systems is that
they do not fit the standard form of (2.1). Specifically, the system of Figure 2.1, as well as most
adaptive control systems, can be represented by the set of coupled ordinary differential equations:
3

x = g(t,X,0) (2.4)
6 = 7q(t,x,O) (2.5)

3Since dynamical systems are controlled by a digital computer, by rights we should use difference equations to
describe the parameter adaptation. Nonetheless, we use (2.5) to illustrate the main ideas, which for the most part
carry forward to the discrete-time case [cf. Ch. 5, Anderson et al. (1986)].
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In (2.4), x E Ill is referred to as the "state" and consists of dynamical states of the system being
controlled, controllei states, and filter states in the parameter estimator. The function g(t, x, 9) is
determined by the system dynamics and the controller/estimator design. In (2.5), 0 E IRP is the
"parameter estimate" whose rate of change is governed by a scalar constant -f > 0 and a function
q(t, z, 0) determined by the designer. Observe that when the parameters are held fixed, the system
is governed by the nonlinear system (2.4) for constant parameter 0.

In the case of an adaptive linear system, (2.4)-(2.5) reduce to,

= A(0)x + B(8)w(t) (2.6)

9 = -yq(t, x, 0) (2.7)

where w(t) E R' consists of all exogenous inputs such as references and disturbances, and A(0) E
IR' x n and B(O) E ,Rnm are matrix functions of the parameter 9, the specific function depending on
the control design rule and the parameter estimation model set. In this case when the parameters
are held fixed, the system is governed by the LTI system (2.6) with 9 constant.

Following Anderson et al. (1986), to apply the method of averaging to the adaptive linear
system (2.6)-(2.7) , we make the assumption that the adaptation gain, '7, is small. This assumption
corresponds to slow adaptation, i.e., 8(t) is slowly changing. To further facilitate the analysis a
time scale decomposition follows giving rise to new differential equations that are coupled in a I
simpler way. First, freeze 0(t) at a constant value 0, and let t(t, 9) denote the solution to the
linear, constant system

= A(O): + B(O)w(t) (2.8)

= 0

called the "frozen system". Observe that i(t, 9) is a function of any vector 8 and a scalar t. Hence,
we may define the error state

77(t) = X(t) - t(t,o(t)) (2.9)

The adaptive linear system (2.6)-(2.7) is then equivalent to

S= -yq(t,i(t,6) + ,7,#) (2.10)

4 = A(0)77 - 8.t(t, )q(t,2(t,) + 1,0) (2.11)

It is convenient to think of q as the "fast" states, particularly when 7 is small. Thus, (2.10)-(2.11) I
is a time-scale decomposition of (2.6)-(2.7). Now, if the fast states asymptotically decay, then 6(t)
approaches solutions of

Gm = 0q(t, 4t, 0m),,,) (2.12)

which is in precisely the form of (2.1), and hence, suitable for averaging. Thus, the "averaged
parameter system" is

:0 7f(G0 ) (2.13) I

wvhere
wef() = ) T q(t, i(t,0),9)dt 

(2.14)

The important results are roughly as follows:

(i) The parameter trajectories of the adaptive linear system (2.6)-(2.7) are to within an order- I
of the solutions of the averaged system (2.13).
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(ii) The stability of the adaptive linear system (2.6)-(2.7) is inherited from the stability of the
averaged system (2.13).

(iii) A stable equilibrium of the averaged system (2.13) has a large region of attraction within
the constant parameter stability set associated with the frozen parameter system (2.8), i.e.,

those fixed 0 for which A(O) is a stability matrix.

These results have a far reaching impact on quantifying engineering guidelines for adaptive
control system design of actual systems. In the first place, they provide a sharp stability-instability

boundary. Secondly, although it is not so apparent from this limited exposition, the conditions for
stabilty of the equilibrium of the averaged system can be formulated in the frequency domain. It
then becomes very clear as to the relation between excitation and system dynamics, e.g., [Ander-
son et at. (1986)],[Kosut et al. (1986)].

In light of the averaging results it is now possible to more fully understand the conditions for local

stability and perhaps more importantly, the causes and mechanisms for instability. In summary,
the method of averaging provides a means to assess the stability and instability properties of slow
adaptive linear systems. There are of course some restrictions, the obvious one being the need for
slow adaptation. More importantly, how slow is slow? The answer is not well quantified at the
present time.

To remove the restrictiveness of slow adaptation will require a better understanding of the
transient and bifurcating behavior of the adaptive system. Some preliminary results on the tran-
sient behavior is presented in Kosut and Bitmead(1986, 1987). For adaptive linear systems, when

the adaptation gain -f is incresed, bifurcation and chaotic phenomena have been observed, e.g.,

[Mareels and Bitmead(1986,1988)], [Salam and Bai(1988)], [Cyr et al. (1983)), [Ydstie(1986)], and
[Schoenwald et al. (1987)]. In these studies, the underlying system is linear. Thus, rapid adaptation
can induce bifurcating and chaotic behavior even in linear systems. Even under slow adaptation,

such phenomena will appear if the system being controlled is nonlinear, as seen in the example
simulation to follow.

2.2.3 A Next Step: Slowly Adapting Nonlinear Systems

As outlined above, the method of averaging so far has been extended and applied only for adaptive
linear control systems, that is, if the adaptive parameters were held fixed, then the resulting closed-

loop system would be linear. This is certainly not the case for flexible mechanical systems which

have significant friction and backlash as well as actuator saturation. Also, during rapid slewing

maneuvers, the effect of the nonlinear kinematics is apparent. Although the method of averaging

can handle nonlinear systems in theory, see, e.g., Hale(1969), the application to adaptive nonlinear

control remains an open area for basic research.

In principal, some of the linearization type results in Anderson et al. (1986) will undoubtedly be

applicable, modulo some technical conditions. There is some early work, e.g., Volosov(1962), which

may be more directly applicable. However, unlike the adaptive linear system, in the nonlinear case

the system may exhibit bifurcations and chaotic behavior even though the adaptation is slow. It is

these type of issues, which are intrinsically nonlinear, that appear as the next step in providing a

more complete and realistic picture of the use and limitations of parameter adaptiv, control.

An example is presented in the next section which illustrates some of these ibues.
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2.2.4 Example: Adaptive Control of a Chaotic System

To provide motivation for studying adaptive control of nonlinear flexible systems we will present
an example simulation which vividly illustrates the research issues. Consider the Duffing system:

.i + k± + x3 = Or (2.15)
where k > 0 is a small damping coefficient, the cubic term, x3, represents a nonlinear spring, is am

feedforward control gain, and r is a reference command which is to be followed by the displacement
x. Prior knowlege of the damping and nonlinear spring term is assumed unavailable, and hence,
the the control parameter 0 will be adapted as follows:

9 = -r(r - x) (2.16)

The constant -y > 0 as before is used to adjust the speed of adaptation. This adaptation rule is a I
so-called "gradient" rule (sometimes referred to as the "M.I.T.-Rule", [Whitakar(1959)]) because
the rate of adjustment is proportional to the negative gradient, with respect to the parameter 9, of
an instantaneous error function. In this case

_T0x-r)' ~ O(r - x)m

where 0 is the instantaneous gradient of x, that is,

Thus, for constant 0, ?k satisfies the differential equation

+ ki + 3X20 = r

Since 0 depends on the unknown damping and cubic nonlinearity in the system (2.15), the pure I
gradient rule b = -7(r - x) cannot be implemented. Using the (crude but simple) approximation
? ; r yields the algorithm of (2.16).

Before studying the adaptive system (2.15)-(2.16) , recall that the Duffing system (2.15) for
constant 0 has been extensively examined. In particular, Ueda(1980) made an exhaustive study

Or = B cos t

and tabulated the resulting long-term behavior -s a function of the parameters (k, B) as shown in
Figure 2.2.

For example, with (k, B) = (.08, .2), there are five coexisting periodic attractors as shown in
Figure 2.3. For (k, B) = (.05, 7.5), (.25, 8.5), or (.1, 12.), the attractors are all chaotic, as seen from
the (x, i)-plane Poincare' sections at the strobe times t E {27rk : k = 1,... ,4250} in Figure 2.4.

I
I
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Figure 2.4: Poincare' sections in the (x,i) plane for three of Ueda's chaotic attractors. From
Ueda (1980) as reprinted in Thompson and Stewart(1986).
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Given the quite complex behavior of the system (2.15) when 9 is constant and r is a sinusoidal

reference, it is to be expected that if 0 is slowly adapted, then the system (2.15)-(2.16) will pass
through regions which contain chaotic and/or periodic attractors.

Simulation Results

Simulations of (2.15)-(2.16) were performed under the following conditions:

I reference
r 

r = .1 cost

damping
k = .05

adaptation gain
0 0 <: t < 250(2r)

-' = .01 250(2ir) < t < 750(2r)
initial conditions .05 750(2r) < t < 4250(2r)

I inital conitions(e,x) = (75,0,0)

integration 
algorithm

4th-order Runge- Kutter integration algorithm with a fixed step-size equal to .005 of the
period of the reference signal r, i.e., step-size=(.005)(27r).

To initialize the system there is no adaptation (-' = 0) for the first 250 periods. This is followed
by 500 periods of very slow adaptation (-I = .01), and then the remainder of the time at relatively
slow adaptation (-I = .05). The adaptive gain, -f, was chosen to produce slow adaptation to prevent
arty possible bifurcations and chaos soley as a result of too rapid an adaptation, which, as previously3 mentioned, is known to occur in adaptive systems even when the system being controlled is linear.
Thus, initially after the adaptation begins,

Or ; 7.5 cost

Referring to Figure 2.4, the initial response of (2.15)-(2.16) will be chaotic. What we hope to see
is that the adaptation brings the system to a less violent condition, which in fact is what occurs.
Figures 2.5- 2.7 show the results of the simulation over 4250 periods of the reference, i.e., for
0 < t < 4250(27r).

Figure 2.5 shows values of x and 0 at the 1-period strobe times t E {27rk : k = 1,...,4250}.
Figure 2.6 shows the (x,9) Poincare' section at these strobe times. Observe that as 0 is adapted,
the system passes in and out of chaotic and periodic behavior. Specifically, reading Figure 2.5 or 2.6

I from left to right: (initially) chaotic - 3-periodic -- chaotic -- 2-periodic -- 1-periodic -- chaotic
3-periodic - (finally) 1-periodic. Despite this incredibly complex behavior, the adaptation of

9 continues relentlessly to monitonically decrease the parameter value until a good steady state is
reached. In fact, some simulations with 9 constant (not shown here) verify that the final steady-
state adaptive parameter is very near to the constant value of 0 minimizing average (x - r)2. This
is precisely the desired property of the so-called gradient algorithm (2.16). Figure 2.7 shows some

17U



samples of time histories of (0, x, j) vs. t for 5 periods of the reference, and also phase plots of X
vs. x for the same 5 periods. Comparison of the initial chaotic phase plot with the final phase plot m
shows a significant improvement in performance in terms of rms error between x and r as well as
"mildness" of response.
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Figure 2.5: Values of x and 0 at 1-period strobe times. m
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2.2.5 Implications for Future Research Directions

The simulation results are very encouraging and strongly support the use of adaptive control to
minimize the potentially deleterious effects of uncertain nonlinearities. It is also encouraging that
the adaptive algorithm (2.16) is very simple to construct and implement. A basic question which
arises from the simulation study is simply:

I Why does the adaptation work?

In fact, as seen in Figures 2.5 and 2.7, the magnitude of 0 decreases monitonically at an almost
uniform rate, seemingly independent of whether the system is chaotic or periodic. Moreover, at the
end of the simulation, as seen in the lower plot of Figure 2.6, the parameter exponentially spirals
towards the final steady-state shown in the bottem time history of Figure 2.7.

At the present time the exact mechanism or conditions which give rise to this pleasing perfor-
mance are not known. Understanding the underlying principals is a major goal of our research
program. Given that slow adaptation is at least prudent, we will certainly consider this situation
in our future efforts, and along these lines we can appeal to the method of averaging analysis which
we used with success for analyzing adaptive linear control systems under slow adaptation.

I
I
I
I
I
I
I
I
I
I
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* 2.3 Synthesis via Uncertainty Estimation

In this section we discuss another approach to adaptive control which is referred to as "uncertainty
estimation". This approach has been used successfully for linear systems representing LSS in

particula r, cf. IKosut(1987b).
I Deiifonndue

I ~ ~~~A lgorfrn mhrao

I Control
param.-ters

reference control Plant

Figure 2.8: Adaptive control with uncertainty estimation.

U The uncertainty estimation approach, depicted in Figure 2.8, differs from the usual adaptive
system of Figure 2.1 in a number of ways:

I . The scheme involves the on-line identification of a nonlinear model set, and then tuning or
redesigning the controller based on the identified model set.

* The model set generated by the identification process contains information as to the accuracy

of the identified model set.

I e The control design rule is robust with respect to the identified model set, that is, the closed-
loop system satisfies all performance requirements for every plant in the identified model

* set.

* There is an outer loop containing a "decision rule" as to when to use the model estimate.

I This is a fundamentally different approach from the usual adaptive schemes (cf. Figure 2.1),
where the identification produces a single estimated model, with no information regarding its

accuracy. In a sense uncertainty estimation shifts the focus from the stability analysis view as

expounded in Section 3, to the system identification view.

In this regard there are several basic research issues which need to be resolved for this approach
to adaptive control to be effective, namely: (1) model set definition, (2) robust n4 linear control de-
sign rules, and (3) uncertainty estimation of nonlinear flexible systems. In Ow, icxt few subsections

* we provide a brief description of what is involved in understanding these issues.

23I



2.3.1 Model Set Definition

The starting point in control design or system identification is a definition of a model structure

which characterizes the fundamental attributes of the dynamical system. In control design we also

need a quantitative description of model accuracy, otherwise there is no way to insure that the

design is robust. Thus, the identification process should produce not only a model estimate, but

also an estimate of uncertainty. In this task we will define a model set which captures both the

dynamical structure as well as being able to describe accuracy.

Specifically, we will begin by examining model sets with the following features:

* Uncertain Parameters. A capability to account for that part of the system which is known
to be governed by physical laws or able to be described by known functions dependent on

certain constant parameters. The parameters may only be known to lie within some range of I
variation.

" Uncertain Nonlinearities. Able to describe uncertainty in the nonlinearities which contribute

to the system dynamics. These nonlinearities can still be dependent on uncertain parameters, i
but here there structure is uncertain as well.

* Unmodeled Dynamics. Able to account for uncertain dynamics for which a parametric struc- I
ture is not available or assumed, e.g., no good physical models or the result of approximations

such as neglecting fast dynamics and linearization.

One of our goals is to investigate the use of model sets with the above features for describing

uncertain nonlinear flexible systems. In a later section we describe a particular model for the
purposes of analysis. However, there are a number of well known methods for describing uncertain
nonlinear systems. I
Singular Perturbations

In this formulation the sytem dynamics are decomposed into two time scales, where E is a positive

constant which reflects the time scale separation between the "slow" states x and the "fast" states z..

This form is known to be compatible with typical areospace systems, see, e.g., Menon et al.(1987).

However, the singular perturbation parameter e is not easily chosen as a physical parameter, and

there is some freedom also in partitioning the states.

The convenience of the above form is that a formal theory exists for separating the time scales,

e.g., Chow and Kokotovic(1978).

Conic Sectors

Here we follow in the tradition of Popov(1961), Zames(1966), Safonov (1980,1981), and Doyle(1982,1984),

to name a few. The idea of conic-sector modeling is quite general and does encompass the singular

perturbation approach described above, however, it is more of an input-output view than a state-

space view. The original ideas by Popov and Zames have been generalized by Safonov and Doyle,

particularly for LTI sytems. A recent result by Safonov(1987) extends the original sufficient sector

stability conditions estiblished by Popov, to necessary conditions, but requires solving a convex
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programming problem. We hope to explore this latter capability. We will also investigate the
optimal scaling methods for LTI conic-sectors established by Doyle(1982,1984).

2.3.2 Robust Nonlinear Control Design

There are now several good methods for designing nonlinear controllers. In this section we discuss
a few that can be applied to nonlinear flexible systems.

I Feedback Linearization

One particular method which we will investigate is the so called feedback linearization, e.g., Hunt,
Su, and Meyer(1983). The basic idea is to apply a nonlinear feedback which brings the closed-

loop system into a purely linear form, which has obvious advantages for control design. A general
discussion of the theory can be found in Isidori(19?). A difficulty with the method is that the
linearizing feedback requires an exact knowledge of the type of system nonlinearities. Robustness
to model errors is an open area in basic research. Some work on robustness has been advanced
in the robotics area, where feedback linearization is there referred to as "computed torque", see,
e.g., Spong and Vidyasagar(1985). Another route is to adapt to maintain parameters in a known
nonlinear structure, e.g., Craig, Hsu, and Sastry(1986), Slotine and Li(1987). The more practical
adaptive problem would involve parameter adaptation where the true system nonlinearities differ
in form from those in the nonlinear model set.

U Singular Perturbations

The advantage of the formal time-scale separation discussed before is that the properties of the full
nonlinear system can be determined by analyzing the simpler slow and fast nonlinear subsystems.
Moreover, the slow and fast controllers can be separately designed.

The time-scale separation parameter c is essentially a measure of the effect of the unmodeled

(fast) dynamics on the modeled (slow) part. As mentioned before, it is often a difficult task to

define c in terms of physical quantities, and hence, the practicle usefulness involves some guesswork.

However, a very nice property of the above approach is that the analysis and formalism is valid for
nonlinear systems. Thus, one can start the modeling process with the full nonlinear model, and

by introducing c in the right place, a subsequently appropriate model reduction automatically fol-

lows. We plan to investigate the applicability of this approach to representing uncertain dynamical
systems.I
Robust Linear Control

In attempting to develop robust control laws for nonlinear systems we will certainly appeal to ex-

isting work on linear systems. For example, robustness of linear feedback systems utilizes frequency

domain expressions for characterizing a set of uncertainty within which lies the true plint, e.g.,

Francis and Zames(1983), Safonov et al.(1981), Doyle and Chu (1985), Vidyasagar(1985h. Ii, these

approaches, uncertainties in the plant model are described in the frequency domain, al,, ,,1,lst

stabilization and performance are guaranteed if the peak value, as a function of frequ,,". . Uf a
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certain closed loop transfer function is sufficiently small. The peak value turns out to be an appro-
priate norm in the space of transfer functions, referred to as the Hoo-norm. The design for robust I
stabilization and performance can then be converted into a minimization problem in the Hoo-norm.

Robust stabilization of linear systems in the presence of parameter uncertainty is a rather more

difficult problem, and at the present time there is no known solution, although many promising

approaches have been advanced. Recently, the analysis and design of robust control systems based
on Kharitonov's theorem and its extensions, has received considerable attention in the literature,

e.g., see Barmish (1987), and Wei and Yedavalli (1987). Although still in its infancy, this approach
will eventually lead to efficient control design methods that can handle structured parameter vari-

ations. Methods based on LQG synthesis have also been advanced, e.g., Tahk and Speyer (19S6)

for general linear systems and Tahk and Speyer(1987) for LSS.

We believe that some of the design methods described in the references above can be further
developed by exploring the particular structure of uncertainty occurring in LSS plants. Further, we I
envision the combination of different design methodologies to achieve the synthesis of controllers
that are robust with respect to combined structured and unstructured uncertainty.

2.3.3 Uncertainty Estimation of Nonlinear Systems

Uncertainty estimation is an identification process which produces a model set estimate compatible I
with prior knowledge regarding uncertainty. The estimator and control design rule use model sets,

rather than a single model estimate as is usually the case. These model sets contain information

on model accuracy, i.e., accuracy of parameter estimates and unmodeled dynamics.

There are two types of problems in designing "uncertainty" extimators:

" Estimation With No Prior Knowledge of Uncertainty
In this case there is no knowledge available about the extent of uncertainty in the unmodeled
dynamics. The indentification scheme should be modified so as to produce not only an I
estimated model, but also a measure of model uncertainty.

" Estimation With Prior Knowledge of Uncertainty
In this case a bound on the uncertainty of the unmodeled dynamics is available. The identi-

fication scheme should be modified so as to produce a parametric model which is as close to

the true system as possible, given the prior information.

2.3.4 Stability Analysis

There is no general theory of stability analysis for adaptive systems which use an uncertainty esti-

mator. In thc linear case there are some results based on least-squares estimation, cf. Kosut(1988).

For nonlinear systems there are some general methods. For example, one can mention the so-called

Total Stability Theorem for dealing with nonlinear differential equations having the general form

= f(t, x) + g(t, x)

where i = f(t,x) is the "nominal" system and where g(t,x) represents "perturbations." The

original form of the theorem is due to Malkin(1958). Later versions can be found in BeUman(1953),

Hale(1969), and more recently in Anderson et al. (1986). Roughly, the Total Stability Theorem
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asserts that if the nominal system is stable, and the perturbations are bounded and sufficiently
smooth, then the perturbed system is also stable. One often tries to make the nomial system linear
or of a special nonlinear structure, e.g., adaptive in the ideal case of no unmodled dynamics. This
is certainly an avenue which we wili explore.

Another route is based on the structure of Figure 2.8. That is, the decision rule switch is open
for a period of time while identification takes place. That is, the parameter estimation process is
sparate focibly from the control design process. Thus, the control parameters are held fixed at there
previous values for a period of time while new values are learned. For example, let ok-I denote a
previously determined parameter value which is being held fixed during the current observation or
learning interval t E [(k - 1)T, kT]. Thus, the adaptive parameters are in effect determined by the
iterative map

Ok =rk(Ok-1), k=1,2,...

where 'k(.) is defined implicitly by

I = g(t,X, 9 k-1)Iq = -yq(t,x,9) 8((k - 1)T) = Ok-1

ik = 0(kT)

An interesting research question is what happens if the observation intervals is long, that is, -y small
and T large. From the previous averaging results one would suspect that for all small -y > 0:

I lim lim 0k=0.+0(7)
T--oo k-oo

where 0. is a fixed-point of the map r(9) defined implicitly as the equilibrium of the averaged system
in the following sense:

1 [to+T
ilim ; q [t, -t(t, o.), r(O.)] dt = 0

f-ooT2 10

Some preliminary results in Phillips, Kosut, and Franklin(1988) suggest that r(.) is contractive in
the constant parameter stability set if and only if 0. is a uas equilibrium of the averaged system
(2.13). This conjecture would also tie together some existing results on bounding the actual fixed-
point, see, e.g., Kosut(1988).

I
I
I
I
I
I
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2.4 Representaive Nonlinear Model and Testbed

In this section we discuss in some detail the type of nonlinear flexible system to be adaptively

controlled. In this regard we first discuss a project at ISI which can provide a realistic model base
as well as an experimental apparatus.I
2.4.1 Adaptive System Testbed

Under an Army funded program at ISI, we are developing an "adaptive system testbed" for rapid

prototyping of advanced adaptive control algorithms. The objective of the testbed facility is to be

able to design, develop, test and validate weapon system control strategies so that a high degree of
confidence can be established in transferring the technology to test vehicles and operational systems.

The testbed is specifically designed for testing weapon pointing control of flexible systems.

Hardware Configuration

The proposed system for the rapid prototyping of control algorithms will consist of an Apollo

workstation, a multi-processor real-time controller and the testbed (see figure 2.9). The Apollo
workstation will be used for developing and simulating the control algorithms, for generating real-

time code, and for interfacing with the real-time control processor. The real-time control processor

wil execute the code generated for the control algorithm and interface with the testbed.

MATRIXx/WS

- MATRIXx
D1ock-Diagrar.s L1J ,

- AutoCode Code 
Te'tbedC neraion and Sra

Cotiriln Line

- Rcal-Timne Interface
- Off-Une Sysetm ID

- Compiler Linker
Locater

Port Real-Time Controller
I * Procesor Cards

- I/0 Interface Cards

" Storage of Acquired Data

I Figure 2.9: Adaptive Control Development System
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I
Software Elements

The feature making the Adaptive Control testbed most desirable for control system experimen-
tation is the ability to easily and rapidly reprogram the processors. Controller architectures and
parameters are specified in block diagram form at a high level using SYSTEM-BUILD, then the
SYSTEM-BUILD diagrams are converted to real-time control programs through an automatic code
generator. This code is then compiled and downloaded to all or some of the processors for real-time
execution. The user can interface with the code executing on the controller through graphical icons
on the host workstation. I
Mechanical Testbed Fixture

A test fixture (sec Figure 2.10) is proposed so that variations in crucial physical parameters can
be quantified and tested easily, for example: drive compliance, drive freeplay (backlash), barrel
length, disturbances, and sensors. Physical variations will be accomplished where possible by
interchangeable and mechanically adjustable elements, otherwise the effects will be emulated in the
real time processor. b..

r a n f . . I ....' w ,r f . E i -

"--,.. I I

"-I,- III
_ _ _ __.....I

"a,. I

Figure 2.10: Pointing Testbed

By making all of the above functions readily adjustable either mechanically or by emulation in
the processors, the performance of different control algorithms based on various sensor and resolver
configurations can be compared.I

2.4.2 Modeling of Nonlinear Flexible SystemsI

Although the Duffing system (2.15) used in the simulation example is interesting, it does not capture
all of the essential characteristics of flexible nonlinear systems under control, and moreover, doesI

not well represent the Adaptive Testbed. However, because it has been so extensively studied,
we do plan to use it as a stepping stone to more representative systems. In particular, a more
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representaive scenario is depicted below in Figure 2.11.

II

Figure 2.11: A flexible rotating system with backlash in the gear-train.

This system represents the case where the actuation is applied to a load through a flexible and
possibly geared device. This is a common situation in mechanical systems such as robots or in

proposed active controllers for large space structures. The gearing is shown to occur at the end
of the flexible member, although other combinations may be possible, this perhaps being the more
common.

Neglecting any electronic dynamics, and assuming that the flexible rod is both uniform and
undamped, the motion of the system for small angular deflections is well approximated by the
partial differential equation in time t and spatial coordinate x,

Iit(t, X) - pz..(t, X) = 0 (2.17)

with boundary conditions PZ(t) = JMztt(t)--(t) (2.18)

pz (t,t) = -J 0 ztt(tt) + ga(t) (2.19)

JLY(t) = Ng[a(t)] (2.20)

where y is the load output, u is the user applied torque, and a is the relative gear angle

a(t) = z(t, t) - Ny(t) (2.21)

The constants are defined as follows: JM, JG, and JL are the motor, motor gear, and load inertias,

respectively, N is the gear ratio which is greator than one, p is the tortional mass density, and p is
the tortional stiffness. The nonlinear function g(.) arises from backlash in the gear train, and has
the typical shape as shown in Figure 2.12.

The break-point parameter ab relates to gear teeth spacing and the slopes in the two regions relate

to gear teeth shapes. Typically for jai > ab the slope is very large whereas for Jal < ab the slope
is very small.

Observe that (2.17)-(2.20) contains many of the features of a realistic flexible system. Firstly,

it is a PDE and thus captures the large number of modes which characterize flexible systems.

Secondly, the nonlinearity g(.) is common to practcally all actuators, both in robotics and those

proposed for space structure active control. Moreover, this type of nonlinearity is also representative

of the interaction between joints and flexible structural members in a space structure. Of course
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Figure 2.12: A typical backlash function.

there is no real end to posing even more complicated models, and at some level even (2.17)-(2.20) I
can be accused of being too simple. The same applies to the Duffing system (2.15), but the counter
argument is based on the rich complexity which results from this "simple" model, e.g., Figure 2.2.
Nonetheless, we take the position that (2.17)-(2.20) is our representaive system for the purposes of
analysis. As mentioned before, we still plan to use the adaptive Duffing system (2.15)-(2.16) as a
stepping stone to further our understanding of systems like (2.17)-(2.20) .

As an intermediate step we will also make use of the following ODE as a one-mode approximation
of (2.17)-(2.20) which includes damping:

JM i = u - D(i2 - ii) + K(z 2 - zI) (2.22)
JG i2 = -9(a) (2.23)

JL = Ng(a) (2.24) I
a = z2 -Ny (2.25)

where z1 , z 2 are defined by I
z1(t) = z(t, 0) z2(t) = z(t,1) (2.26)

and where the constants D and K represent damping and stiffness, respectively.

I
I
I
I
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Abstract

An adaptive control system is examined where the traditional parameter estimator
is replaced by a parameter set estimator which provides a measure of uncertainty of
the estimated parameters. It is shown bow to construct a parameter set estimator with
the property that the true system is always in the model set, and furthermore, how to
design the estimation experiment so that the set of uncertainty is as small as possible
given some a priori information.
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1 Introduction

A parameter adaptive control system, as depicted in Figure 1, consists of two processes
which make the system adaptive, namely: (1) a model parameter estimator, and (2) a

control design rule.

* Figure 1: Generic Adaptive Control System

The parameter estimator (ID) operates on the input-output data obtained from mea-

surements (y, u) of the plant system (P) to be controlled, producing a model parameter

estimate j E IRP. The parameter estimate is transformed by the control design rule (D)
into a controller parameter E IR, which is then used in a pre-determined parametric con-

troller structure (C) in feedback with the actual system. Questions regarding the behavior
of this system can be answered by describing the estimator properties, in particular, the

* "goodness" of the "converged" model set.

From the viewpoint of designing a robust control, by a good model set is roughly meant

one for which every member produces a controller, via the control design rule, which when

applied to the actual system yields acceptable closed- loop performance with regard to
attenuating the effect of the disturbance d and tracking the reference r. Hence, a properly

designed model estimator should converge to a member of that model set which yields the

requsite closed-loop performance.

However, in the adaptive control system of Figure 1, no specific accuracy informa-

tion about (P) is passed to the control design rule (D). Thus, we reach a very important
observation:

I The model estimator should be designed to be compatible with the same class of
uncertainty anticipated by the robust control design rule.

SI The idea then, is to replace the usual single point parameter estimator of Figure 1 with a
parameter set estimator which provides a set of parameter values, and hence, a measure

of parameter estimation accuracy. The control design rule must then also be modified so

as to accept this uncertainty description and produce a controller which is robust to the
parameter set.

The estimation of a transfer function from measured data has, of course, a long history,

and there will be no attempt to document that here. A good source of references as wellI



I
as providing a clear elucidation of the technical issues is the textbook by Ljung(1987).
One means to provide a measure of uncertainty in the transfer function estimate, is based
on utilizing the theoretical asymptotic staitistics to produce confidence intervals from chi-
squared distributions. Underlying this approach, however, is the assumption that the true
plant is in the model set, and hence, estimation errors are assumed to be dominated by
the variance contribution for a sufficiently long observation interval. In the case considered
here, the dominant contribution is the bias, which is primarily due to unmodelled dynamics
and disturbances. Moreover, it is important when designing the estimation experiment to i
be aware of the intended use of the estimte, which in the case considered here, is control
design.

Some recent work along these lines may be found in Wahlberg and Ljung(1986), Gevers
and Ljung(1986), Wittenmark(1987), and Hansen(1988). The idea in these references is
to manipulate the user design choices for the identification experiment, such as data filters
and input spectra, so that the criterion for estimation looks like the criterion for the
intended use of the model estimate, e.g., control design in this case. Another approach is
to use high order model sets and then model reduction for control design, e.g., Wahlberg(
1986) uses high order least-squares, Parker and Bitmead(1987) use high order FIR models.
The appeal of these approaches is that no parametric model need be advanced. In this
case the transfer function estimation error consists of a term which depends only on the
true transfer function and decays as model order increases, plus a term which depends
on the noise-to- signal ratio and may increase as model order increases. These terms can
be bounded, but the results are asymptotic giving only qualitative information. Another
potential difficulty is the high order which may be too computationally intensive in some
situations. The work of LaMaire et al. (1987) overcomes the high order problem by using
a low order parametric model set. The procedure results in parameter estimates along
with estimating a bound on the unmodelled dynamics. In some cases this will also require
considerable computation. In Kosut(1986, 1987), a middle road was taken where least-

squares is used to estimate the parametric model and a standard spectral estimator is used
on the residual output error resulting in a crude bound on the unmodelled dynamics and
disturbance spectrum.

In this paper we concentrate on developing a parameter set estimator from the standard
least-squares parameter estimator together with some a priori information about the the
plant system unmodeled dynamics and disturbances. Least-squares parameter estimation
is one of the most widely used methods for obtaining parameter estimates. Its popularity I
arises undoubtedly because of the ease in finding a solution, i.e., the solution is a unique
global minimum and has both a closed-form solution, sometimes called batch-least-squares
(BLS), and a recusive solution method, or recursive-least-squares (RLS). The problem or
disadvantage is that the resulting model estimate obtained via LS will be "biased" as a
result of inevitible modeling approximations, most notably, unmodeled disturbances and
dynamics. But, the disadvantage can be alleviated by the advantage. In the approach
presented here, we exploit the known solution structure, and together with some a priori
data, produce a parameter set estimator which contains the true system. We also show how
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to design the estimation experiment so that this set is as small as possible with respect to
the a priori information. Specifically, we use a transfer function model set which consists
of a parametric part with a known structure, and an unstructured part which is known
a priori to be bounded in the frequency domain. Once this is done, two results follow,
namely, (1) an upper bound on parameter bias can be determined from the on- line data,
and (2) the bound can be made small by appropriate choice of data filters and input spectra.
This approach follows quite closely to that of Morrison and Walker(1988), the results here
being applicable to more general model sets. Also, the upper bound on parameter error
obtained here is asymptotically tight given the a priori data, and can be computed using
the standard DFT. A preliminary version of this paper is in Kosut(1988).

Other important estimator requirements, such as the rate of convergence and region of
attraction, which play a significant role in estimator design, are not specifically addressed.
For example, if convergence to the model set is slow, and the initial model estimate is
too coarse, then unacceptable behavior may occur during the learning process. Designing
adaptive control systems with a prescribed rate of convergence or region of attraction is
not a solved problem, although much is understood in the case of slow adaptation, e.g.,
Anderson et al.(1986).
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2 Parametric Transfer Function Modeling

2.1 Sampled-Data Structure

We start with the assumption that the true plant system is accessed through a sampled- I
data structure where control commands and data acquisition occur at simultaneous discrete

sampling instances separated by uniform intervals. Thus, the true plant system can be
described by the discrete-time relation

y = u+d (1)

where y(t) and u(t) are the measured output and input sequences, respectively, evaluated

at the normalized sample times t E {... ,-1,0,1,2,...}. The sequence d(t) represents the
effect of disturbances sources as seen at the output. The operator G is linear and time- I
invariant with transfer function G(q), where q is the shift operator, i.e., (qkx)(t) = x(t+k)
for any integer k. Unless needed for clarification we will suppress the 'q' and 't' arguments
in transfer functions and sequences, respectively.

Note that the input u may be generated by a feedback mechanism.

2.2 Transfer Function Parametrization

The plant transfer function is assumed to have the following structure:

G B. + AB (2)IG Ae. + AA()

where B
Beo -- L0 + X=1 b0 ,Li

A9. = M. + Z =I aoiMi (3)

9o = (a., ao,,,, i a,. b 1 .b,,,)T EIRP, p=n+m

and Li, Mi, AB, AA are stable transfer functions. We refer to 00 E IRP as the true parameter,

Go= B (4)

as the parametric transfer function, and to AB, AA as nonparametric or unmodeled dynam- j
ics in the numerator and denominator, respectively. The following data is assumed to be

available a priori : I

A Priori Data:

(i) Li, Mi are known stable transfer functions.

(ii) AB, AA are uncertain stable transfer functions satisfying:

1AB(ejW)l < IWB(ei')I, Vijw < I
IAA(dw)I : 4 IWA(I ), Vlo: 7r

4



where WB, IVA are known stable transfer functions.

(iii) The true parameter 0o is in the set

{,om E{o : a"" ao,ja7 b"n < b. <b7} (6)

This model structure and a priori assumptions define a family of transfer functions.
Within this family, or model set, are many of the common transfer function model sets
used for robust control design. For example, there is the ubiquitous

E!-~ bo iq- i

= =1. L (7)G 1 + EL 1 ao,jq-1

where L represents nonparametric dynamics. The choices of the model elements in (2)
depend upon a priori information about L. Suppose, for example, that L is an a priori
estimate of L, and it is known that the relative error L = L/L - 1 satisfies
| iL(e ..)j < IWL(el')I, Vlwl < 7

The corresponding choices in (2) are then:

B90 = Z2 1 bo,jq - 'Z
A s, = 1 + F-!' , .ao, q- (
AB = LB 0, (8)
AA =0

The transfer functions {Li, Mj} in (2) follow from the above definition and are obviously
stable. In addition, the unmodeled dynamics are bounded by:

WA = 0

wB = {W stable: sup9.e IWL(dw)Bo.(eji)I _ IW(ej)l} (9)

A similar configuration would follow if the unmodeled dynamics involved the absolute
error, i.e., where L = L - L.

Another common model form arises from the theory of stable factorization, see, e.g.,
Vidyasagar(1985). In this case Be0 and A 0 represent stable co-prime factors. For example,

B9 n = b0 , (10)

A90 = a, Di=1 - o

where D is a polynomial in q-1 such that 11D is stable. In this case, AB and AA are
unmodeled dynamics in the stable factors.

In many instances the plant transfer function is bilinear in a particular physical pa-
rameter. For example, a mass at the tip of a flexible shaft will enter linearly in both the

5
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numerator and denominator of the transfer function from the tip position to the torque
at the shaft hub, see, e.g., Rovner and Franklin(1987). In general there are always fewer
"physical" parameters than "canonical" parameters such as transfer function coefficients.
A general bilinear form for a physical transfer function parametrization is (2) with

Be0  = Lo+ P1=1 9o,jLI
Ao. = A/Ia e+o,' (11)

= ... eoP)T

where now 0o E R P is the true physical parameter vector. Observe that (11) allows for
common parameters in the numerator and denominator of the parametric model, and
hence, is a more general form than (3).

2.3 Caveat Emptor

The plant parametrization (2) is limited by the "locations" of the unmodeled dynamics,
AB, AA, which represent relative errors in both the numerator and denominator, respec-

tively. If more is known about the source of the unmodeled dynamics, then there is
a tendency towards conservatism which limits the control design performance, see, e.g.,
Doyle et al. (1982). Other more sophisticated structures for the puposes of transfer func-
tion parameter estimation can be advanced [e.g., Krause and Khargonnekar(1987)], but
these will not be pursued here, since for many cases our proposed structure suffices.

6I

I,I
I
I
I
I
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3 Least-Squares Parameter Estimation

3.1 Batch-Least-Squares

U The batch-least-squares parameter estimator transforms the measured data {y, u : t E

(0, N - 1]} into the parameter estimate 9s E IRP by solving:

4vS = arg min (6)N (12)
GER

where ce is a parametric error sequence generated from the measured data, and ()N denotes
averaging over the N-point observation interval, i.e.,

1 N-1
(X)N = E X z(t) (13)

The parametric structure of eq is motivated by the model structure of (2). Thus, we
form the (filtered) parametric equation error

e = WF(Agy - Bou) (14)

where WF is a stable data filter, and corresponding to the form of (2) and (3),

Bo = L' + EnI biLi

A9 = M 0 + E!' a M (15)

0 = (a, ".a. b '"b.) T

The error can be written as an affine function of 0, that is,

C = z - 9TO (16)

with
z = WF(Moy- Lou)

0 = WF (-Mly"... My Lu ... Lmu)T

3 We refer to 0 E IRP as the regressor. Clearly, both z E ]R and 0 E IR P are obtained by
filtering the measured data. Observe that in the more general parametrization of (11),

z = WF(Moy- Lu)

0 = WF (Lu - Mly...Lpu-My) T  (18)

With the above definitions of z and 4, the familiar solution to (12) is

3 LS = (OOT)N (OZ)N (19)

provided the indicated inverse exist. The following result is now easily obtained:

7



Lemma 1 (Linear Regression Model and Parameter Error) The true system is equiv-
alent to the linear regression model,

w = 9o.T + , + Ed (20)
where I

CA = Wp (-AAY + ABU) (21) I
E = WF (Aa. + AA)d (22)

In addition, the parameter error can be decomposed as follows:

-LS go = o+ (23)

where 0' is the error contribution due to nonparametric dynamics and 0- is the error
contribution from the disturbance. Specifically,

T (24)I

=~ (OOT) N (06d)N (25)I

The expression (20) can be thought oi as a "canonical linear regression model" with a
parameter 0o to be estimated from "measurements" {z, 0 :t E [0, N - 1J}. The sequences

66, Cd represent the effect of the nonparametric dynamics and disturbances, respectively.
That is, behavior of z which can not be accounted for by the parametric part 0oTo.

The parameter error expressions in Lemma 1 generalize those found in Morrison and
Walker(198S). Observe that in the expression for ON, the right hand side is a function
of the regressor sequence {q}, which is obtained from measurements, and the unknowns,
AB, AA, and 0,. In the expression for ON the only unknown in the right side is the error
sequence {d}. Thus, any attempt to provide on-line bounds for the parameter error will
involve a priori data as well as measured data.

3.2 Recursive-Least-Squares I
The recursive-least-squares (RLS) algorithm is [see, e.g., Ljung(1987)]: I

_(t) = Z(t) - q s(t)T 6R

L = ,_ + R(t)--(t)+(t) (26)

R(t) = R(t - 1) + #(t)4(t)T

The algorithm starts at t = 1 with initial values 9o and R, = R! > 0. For t > 1 the RLS I
estimate is explicitly given by

&tRLS [~O+(qT)' [-1 + (qOZ~t] (7

t8 I
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Assuming that (€€ exists for all t > t0 > 1, then for sufficiently large t > t0 and/or

I small Ro, the RLS estitmate is approximately the BLS estimate for a data record of length
t, i.e.,

A principal adavantage of RLS over BLS is that memory requirements can be vastly dif-

ferent especially for very long data records. BLS stores records of length 0 (t), whereas
RLS stores only 0 (p). Since the RLS estimate will approach the BLS estimate, RLS is
usually the method of preference even if the computations are to be done off-line, e.g.,

RLS is used repeatedly over the data set.

3.3 Parameter Set Estimation

The problem of parameter set estimation is to transform the measured data {y, u : t E

I [0, N - 1]} plus any a priori data into the parameter set estimate

I = ® { ERP : 110 - II6 (29)

where I is a vector norm on I P, j is a nominal estimate, and 6 specifies its uncertainty

in IRP. Conceptually, the set estimator is the map

{ {y,u :t E (O,N- 1}

a priori data

In order for 6 to be useful for control design we first require that the true parameter 0, is
in this set, that is,

Oo E e (31)

I Secondly, the set should be sufficiently small so as to insure a robust control design which
also satisfies some performance specifications. Hence, a second constraint is

Is f < om)pec (

where Spec is obtained from closed-loop design specifications. Without the design con-
straint the estimation problem has no practical meaning, because then typically the a pri-
ori set is sufficient for design; the result being a stable, but low performance closed-loop
system.

I
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4 Parameter Error From Unmodeled Dynamics

Using Lemma 1, we will establish a bound on I10N1U which depends on the measured and

a priori data. The norm used is the 4co-norm on JR P, that is, [[x[[ = max{jxi[ i E [1,pJ},

which is consistent with independent model parameters as in (6). One can rationalize other I
choices as well. For example, the e2-norm, tixil = (xTX) 1/2, implicitly imposes a relation

amongst the parameters which may be sensible in some problem context.

In the results to follow we use I1 - 1to also denote the matrix norm induced by the

ec-norm, that is, for any matrix A with (possibly complex) elements ai1,

I]AII 4-f sup hlAxl = supE jaijj (33)
Ilixi= i j

We also use 'abs [A]' to denote the matrix whose elements are the absolute values of each

element of the matrix A, thus, [[A[J = 1abs [A] f1. The Discrete-Fourier Transform, or DFT,
of a sequence {f: t E [0, N - 1]} is defined here as

1 N-1 27rk
Fg(w) = DFT{f} = - E f(t)e -j , w E ={-: k E [0, N- 1]}

IV---0

where Qjv are the normalized DFT frequencies. I
Theorem 1 (Bound on Parameter Error) Let {1N(w),YN(w),UN(w) : w E £QN} de-

note the DFT's of the N-point sequences {, y, u :t E [0, N - 1]}, respectively, with DFT
frequencies nv. Let WBF(t) and WAF(t) denote the pulse response of WFAB and WFAA,

respectively. Suppose there are stable transfer functions WB and WA, and constants M > 0

and p E (0, 1), such that:

IAB(e')l IWB(e")], Vw_ _7 (34)

IAA(e_3 )i IWA(e')i, VIWI < 7 (35)

Then, maX{IwBF(t)l, IWAF(t)I} < Mpt, Vt >_ 0 (36)

'11Nh 11-YAJI + 11-tBi + 0(7 /3(37)

where U,,-YB E RP are given by 

1

-YA = Z abs [ WF(eiw)VVA(ej-)YN(w) (OOT)l N (N(W)1 (38)

wEQN

= B = abs [ WF(eiw)WVB(ew_)UN(W) (OOT)N'4 N(W)] (39)

and P6 is the constant

w t E :o(,-, -c (tE(C,-i] U(t) -UN(t) ) (1-P))

with {yNv,uv : t E (-oo, oo)} the N-periodic extension of {y,u t E [0,N- 111.

Proof: See Appendix.

10 I
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Remarks: (1) The N-periodic extension of the N-point sequences y, u are obtained by
copying y, u for all N-point intervals in (-oo, oo).

(2) In the special case when y, u are N-periodic, P = 0, and the bound (37) on the3 parameter error is tight, that is,

sup IJI[ 1I = 11[YAJ + IhBII (41)
m3~A ,AA

Thus, for large values of N, the bound is asymptotically tight.

(3) The constant p E (0, 1) is the magnitude of the least stable pole of either WFA-B or
WVFA.A.

I 4.1 Computing The Bound

To compute the bound in (37) requires both measured and a priori data. The first two

terms in the bound involve the vectors YB,yA. These depend on the measured N-point
data {, y, u : t E [0, N - 1]} and on a priori knowledge of the model weighting functions

WB and TVA. The measured data can be used to compute the required DFT's as well as

The last term in (37) decays as 1/N, and hence, can be neglected for a sufficiently long

data record. If not neglected, then its computation depends on a number /3. To compute

m3, observe that the first and second factors in P3 depend on measured data. The first uses
current data, that is, data for t E (0, N - 1]. However, the second factor needs information
from Biblical Times (t = -oo) to just before the current data record (t = 0). Since this

second factor is essentially a measure of the nearness to N-periodicity of y, u, it is likely

that a reasonable upper bound can be found from analysis or experiments. The third factor
depends on a priori knowledge of the pulse response of the nonparametric error dynamics.

4.2 Design Choices

The designer can affect the size of the bound by direct choice of the data filter WVF, and

indirectly, by manipulating some exogenous probing signals. Both of these choices will

effect 7B, -YA, and ft.

Selection of the data filter WF is based on the underlying assumption that the para-
metric model Go. is a good approximation of G over some range of frequencies f2 F. Hence,
a natural choice for the data filter is one that has the property that

1 + 10(77), E!QF (42)

[WF~e/1 1)[ = O (r7), otherwise

I where q/ is a small positive number which can be interpreted as passband or stopband

"ripple". As a result we have:

| 11
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Corllary 1 If WF satisfies (42), then for all small 1 > 0,

io11 _ (sup IwA(ew)) PFAII + (sup I d)l We IBII±0(1) + (43)

where ,3 is from Theorem I and FA, TB E IR are given by: 3
;TA = abs [(W) (OOT) N ' 1' (44)3

YTB = Zabs [UNAW) (OOT)1 N N(w)] (45)
wEFI

For large N and small 77, the bound in (43) is proportional to the peak magnitude in

the frequency domain of the nonparametric dynamics in the passband QF. This is unlike

robust control where a bound is needed over all frequencies. Thus, the data filter can

be used to offset the impact of the poorly modeled nonparametric dynamics. A typical

example is
-= {: IwE [w,,,wb]} (46)

The bound in (43) is also proportional to a sum of vector norms (111IA11 + IB 11) which

can be related to the condition number of the matrix (O¢T). Recall that

cond {<(0T)} 4 (T) ' 1III (OT)N N[ (47)

To see the relation, observe that I
I1YAI1 -< 1(6 ) IIII Z abs[YN(w),N(w)I 1 1

= cond{(4q5T)N} (r WJE.0N abs [YN(W)cIN(w)] I)11 (OOT)N 11

Clearly the second factor above is near unity because 0 consists of filtered versions of y, u.

Thus, data which results in a large condition number is just as bad as large nonparametric

model error in the passband.

Observe that the smallest value of the condition number is one, and minimization of

it is a long standing difficult problem, especially in closed-loop where (¢OT)N depends in

a complicated manner on the true plant dynamics and all the exogenous inputs, see, e.g.,

Mareels et al. (1986).

121
I
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5 Application to a Special Case

To provide a clearer interpretation of Theorem 1 and Corollary 1, we specialize the results

to the model structure of (7), that is, where

1 = + o%~,iq 1
=,£ aoiq - n L  (48)

L = [I +,] Z (49)

U and where L represents uncertain stable nonparametric dynamics known to be bounded

by

3I IL'(e)l - IWL(e )l' Vl I <- 7 (50)

We then have:

ft1
m . = F ~ bo .,' ( 5 )

n

Ago = 1 + >ao,iq- (52)
i=1

m

A" = L bo'i, (53)
AA = 0 (54)

I The least-squares parameter error due to the unmodeled dynamics and distrbance is in

this case:

I N=0-) (55)
=~ (0T) (0-d) N (56)

,= L bo,,q-'u (57)
i=I

Ed = WFAOOd (58)

0 = WFL (-q-ly q-'y q-lu... q-u)T (59)

I The above definitions lead to the more concise expression:

I bo (60)

bTu 0 (b.,i ... ba,m)
I Thus,

IiTW (0 ,A(Onjo OnX) (61)
VN VVN \'(r b,,

As a result, following Theorem 1 and Corollary 1, we can state:

I 13
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Theorem 2
II 11 1 _< lrllIl + 0 (1/N) (62)

where F E 1:P" is:

r = E abs [WL(eji)(NT)_' 1N(W)I'N(W) T (Oxm (63)wEQNI I I

In addition, if WF satisfies (42), then I
erI1@11 < ( i .F IWL(e)I)I11111 Ilboll + 0 (7) +0 (/N) (64)

whereabs [(OT)1 (' W)N()T ( Onxm) 
(65)

An example of this model structure is presented next. I

5.1 Example: Rotating Flexible Servo H
The example system is a rotating flexible servo described in Astr6mand Wittenmark(1988).

It consists of a load connected by a flexible shaft to a motor/tachometer. The servo
design objective is to control the motor velocity despite changing loads and uncertain shaft

flexibilty. It is assumed that the flexible shaft is adequately modeled by its first flexible
mode whose frequency is well below the bandwidth of the motor/tach electronics. Thus,
a good continuous-time transfer function model from motor control voltage to motor/tach

velocity output is'

G(s) KE(JLS2 + Dss + Ks) (66)
±[LMS (JL + JM)DSS + (JL + JM)KsI 66

JL is the load inertia, JM is the motor/tach inertia, Ks is the shaft stiffness, Ds is the
shaft damping, and KE is the product of the motor and tach electronic gains.

5.1.1 Parameter Set Estimation I
The parametric model used for parameter set estimation is obtained by neglecting the

shaft flexibility, thus, G )

1 Beware that we use the same nomenclature to denote continuous-time and discrete-time transfer func-
tions, e.g., G(s) and G(q). These are not to be read as the same function of a different variable s and q. In

this case, G(q) de0 ZO" {G(s)} where Z0" {} is the usual zero-order-hold transformation.

14 I



with true parameter 
00 = + 

(68)Ao , + im (8

The effect of the changing load appears as a change in the parameter 00. The discrete-time
parametric transfer function is then

Goo(q) = ZOH" - 1- q-' (69)*~~ 1cee~ - q-1

where h is the sampling interval and Z07" {} is the usual zero-order-hold transformation.
By neglecting the flexible modes, we have implicitly made the selection

L=1 (70)

I 
Hence,

Be. = Ooq- 1  (71)
1A9. A1 (1-q-') (72)

AA = 0 (73)

AB = 0.q- (74)

3 where the nonparametric transfer function is

= ZO-L {G(s) - Ge°(s)}
ZO-z {Ge(s)} (75)

1~ ~ ~~, -S-__ [ "J
hq 1q 1 0 J"J" s (76)

SI JL+JM) + Dss+ Ks}

Since the denominator delay will be cancelled by a numerator delay, L is stable [see any
table of ZOH {}-transforms]. Also, L(1) = 0, thereby reinforcing the assumption that
Go is a good low frequency model.

The parametric equation error (16) is now

ca = z- 0€

with
z = WFI(1 - q-1)y

= WFq-'u

From Lemma 1 we have,

z = 0o4+eA +ed (77)

I = Ooe (78)

Cd= WFh(1 - q-')d (79)
15
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The parameter estimate is then
= (0z), (80) I

Effect of Nonparametric Dynamics

The parameter error due to the nonparametric dynamics is

O = 0o (2))

From Theorem 2 we have the bound:

0I :5 I6 1 ±+O0(11N) (82)I

where

= ZW N I'D)I*N(W)I2

<DN(w) =DFT f. 0} = DF Wq'j W E- ON

If, in addition, WF satisfies (42), then6 5 2 + ( ) (83)

w here 2 = SP lI(j )I

Simulation Results I
Simulations were performed using the following values from Astr6mand Wittenmark(1988): I

JL E (.0002, .0021

JM = .002
KE = .5 (84)
Ks = 100.
Ds = .0001

The frequency and damping ratio of the flexible mode, as well as the true parameter 0

vary with JL E [.0002, .0021 as follows:

frequency = I (JL + JM)KS E [118,50] (hz)
21r V JLJ I

damping D JL+ M
2mpi g -K jM E [1.582 x 10 - , 1.581 x 10 -] I

9,, E [125,227.27]

• . , . i I I I I I I6
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Suppose the sampling interval is h = .002 sec, thus, the sampling frequency is 500 hz.
Figure 2 shows a plot of IZ(ejw)I, w = 27rhf, vs. f in hz for varying JL E [.0002,.002].

Suppose that the true but unknown load is JL = .002. Thus, the unknown parameter

is 90 = 125 which is to be estimated. Since the plant is unstable we use the stabilizing,
but low performance, control

u = 1.5(r - y) (85)

where r(t) is a user applied reference command.

I Single Tone Reference In this experiment the reference is the single tone

r(t) = sin(wrt), w, = 27rhfr (86)

and the data filter is
IIW=l1 (87)

The parameter error bound is then

g EON Ilot l (L,)12 - lL(e-r)I + 0(1/N) (88)

E6N l'NM)12

3 Simulations were performed with the system initially at rest with input tones at

f, = [5,10,20,401 hz

At each tone a BLS parameter estimate was obtained for data records of length

N = [64,128,256,512,1024]

The results are shown in Figures 3-5. Figures 3 and 4 show, respectively, the true normal-

ized parameter error I jN/4o and the parameter error estimate 6 from (88) superimposed (in
x's) on the graph of I(e')l at each reference frequency w,. for varying data record length

N. Observe that as N increases, both the error and the bound approach the asymptotic

upper bound IZ(ejw)l corresponding to the input tone. This is predicted by the theory.

Figure 5 displays the same data as a function of N, i.e., , the bound 6, and the
limiting value IL(eji-)I which does not depend on N. All the values are converging to this
limit as N increases. A summary of the plotted data is also contained in Table 1.

17
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I
Figure 2: IZ(e ")I vs. w for varying JL = .002 (dark line), JL = .00063 (dashed line), and
JL = .0002 (dotted line).
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Figure 3: The x's are the true normalized parameter error I9N/eo superimposed on the

graph of [i(ei)[ vs. w (dark line) at each reference frequency w,. for varying data record 1
length N.
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Figure 4: The x's are the values of the parameter error estimate S from (88) superimposed

on the graph of IL(ew)) vs. w (dark line) at each reference frequency w. for varying data

record length N.
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Fiure 5: Plotted vs. data length N are: normalized parameter error I9,/oj (dark line),
parameter error estimate 6 (dotted line), and IL(eijwi) (dashed line).
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fr N IWN/9I. S IL~eiwr)I

5 64 .0228 .0684 .0112 i
128 .0167 .0208
256 .0131 .0389
512 .0113 .0222

1024 .0105 .0119
10 64 .0544 0714 .0420

128 .0470 .1132
256 .0433 .0699
512 .0415 .0465

1024 .0406 .0483
20 64 .1976 .2771 .1825

128 .1888 .2661
256 .1849 .2131
512 .1831 .1902

1024 .1822 .1857
40 64 1.5267 1.6631 1.6848

128 1.5971 1.7490
256 1.6291 1.7562
512 1.6438 1.7243

1024 1.6510 1.7240

Table 1: Summary of simulation results with single tone reference J
I
I
I
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I 1
Square-Wave Reference We repeat the experiment with a unit amplitude square-
wave refrence whose base period is 256h = .512 sec (1.953 hz). The results are shown in
Figures 6-9. Figure 6 shows the time histories of the plant input and output for 1024 data
points, i.e., 1023h = 2.046 sec. The data filter is an 8th order Butterworth low'pass filter
with cutoff frequency WF. The experiments correspond to the following values of cutoff
frequency:

WF = 21rhfF, fF = [5, 10, 20,40] hz

The filter then behaves like (42) with the passband

I "F = {w E N: WI 5 WF} (89)

Figures 7 and 8 show, respectively, the true normalized parameter error 14v/0, and the
bound 61 from (82) (the x's) superimposed on the graph of IL(ei') at each filter cutoff
frequency WF for varying data record length N.

m Observe that as N increases, both the true error and the estimate approach the asymp-
totic limit IL(e"-) corresponding to the filter cutoff frequency. This is predicted by the
theory. Figure 9 displays the same data as a function of N, i.e., jO'/0o1, the bound 6, and

the constant limiting value jL(ej')j. In this case all the values are below or near the limit
except for one instance at WF = 5hz and a very short data record of N = 64. A summary
of all the square-wave data is contained in Table 2.

0

I _ _,___ __ _, ___ __ __ __,__ __

0 .3 .6 .9 1.2 1.5 1.8 2.1

I lM

. ........... .... ....... ........

0 .3 .6 .9 1.2 1.5 1.8 2.1

TIME

m Figure 6: Time histories of (y, r) (upper) and (u, r) (lower).

I
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Figure 7: The x's are the true normalized parameter error jB /0o[ superimposed on the

graph of IL(eJw)I vs. w (dark line) at each filter frequency WF for varying data record length

N.
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Figure 8: The x's are the values of the parameter error estimate 6 from (88) superimposed
on the graph of IL(eiw)I vs. w (dark line) at each filter frequency WF for varying data record

length N.
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Figure 9: Plotted vs. data length N are: normalized parameter error 10 /1ol (dark line),
parameter error estimate 6 (dotted line), and Ij(e"wF)l (dashed line).
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fF N 40Oj 6ILe")

5 64 .0074 .3289 .0112
128 .0029 .0126
256 .0026 .0114
512 .0024 .0064
1024 .0023 .0050

10 64 .0119 .0338 .0420
128 .0137 .0144
256 .0140 .0145
512 .0143 .0146
1024 .0144 .0146

20 64 .0597 .0604 .1825
128 .0604 .0607
256 .0603 .0606
512 .0603 .0605

1024 .0603 .0605
40 64 .2882 .2906 1.6848

128 .2882 .2906
256 .2882 .2906
512 .2882 .2906

1024 .2882 .2906

Table 2: Summary of simulation results with square wave reference j

I
I
I
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5.1.2 Set-Point Regulator Design

The problem is to design a set point regulator for the true plant

GI G o Ge(1 + Z), Go0 - 0"hq1
1ohq -1

where 0, and L are unknown elements of the sets:

00 E [125,227.27]

ILE(ejw)I !5 IWL(ejw)I, Vjwj :57

where VL is known. We will takeI WL = L 'JL=.002

which is the worst case as seen in Figure 2. The regulator is based on the parameter set
estimator of 0 o, where 10 0I eol 610ol

with 9 from (80) and 6 given by either (82) or (83). The control sequence is obtained via

the feedback system
|u =KI(r - y)

where Ks-, the regulator transfer function, is selected to satisfy

Kq-G = T.

with T. the desired closed-loop trnasfer function from r to y. Observe that T. does not
depend on the parameter estimate 0. Applying this control to the actual plant results in

the closed-loop transfer function

I where 
I+T.M

I = _Co
G? _

M (1+G)(1+L)-I

The transfer function G reflects the parameter estimation error, and in this example reduces

to the constant

I0
Thus,

00 L - No
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where 9N is the parameter error induced by the unmodeled dynamics L. Since G, L, and
T. are all stable, it follows that a sufficient condition for T to be stable is I

IT.(eJ)W)( W)Il < 1, VlWI _< 7 (90)

To provide a numerical example, consider the experiment with a square-wave reference
and a low pass data filter with fF = 20 hz. With N = 1024, we have 1i2/oI = .0603,
61 = .0605, and 62 = .1825 [see Table 2]. Figure 10 shows I.M(eiw)[ vs. w for normalized
parameter errors of jNA/O = ±.0603, ±.1825. The trouble spot is clearly at 50 hz where
the error is about 125 db. Suppose that T. is chosen as a 4th order 10hz low pass filter.
Figure ?? shows that the closed-loop system is stable since the above inequality is satisfied.

I
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Figure 10: IM(eJw)l vs. w for normalized parameter errors of 8OA/0 = +.0603 (dark line),
-.0603 (dotted line), +.1825 (dashed line), -.1825 (dash-dotted line). I

Further restrictions are required to satisfy performance and not just stability. A con-
venient expression which reflects closed-loop performance is the relative error between the
true closed-loop T and the desired T., that is:

def T  (1 T.)M

T. 1 + T.M

Suppose that the closed-loop performance tolerance is

IT(el')1 < e(w), VJwJ < 7r
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where e(w) is a specified function of frequency. A typical example is

e(a) = { ~low, Ica _<W :w
Ihigh, jwj > W'

The frequency w, represents the closed-loop performance bandwidth, e.g., T.(e w) ; 1, IwI <
w,. A sufficient condition to insure the performance constraint is that

sup IM(e3w)[ < (c) def e(a)
| ! -Ool<S6o I1 - T-(ei )j + E(w)IT.(e')j

which also insures that IT(ejw)Mv(ej') < 1, thus, T is stable. Using in place of the left
I hand side above an upper bound results in

[L(eJw)I + <e(w)
I1-5 -

Finally, an upper bound on parameter error, sufficient to insure performance as defined
I above, is me )

6 < 6, min £()

I Observe that for consisitancy we need

I IL(eij)j < e(w)

which also enforces the requirement that 8 < 1. To see how to use these relations for
design, let Elo, = .1, ejigh = 10,000. Figure 12 shows a plot of I(ej0j) and £(w) vs. w.
Thus, performance will be satisfied if

I §/ooI < ,m = .0164

The minimum occurs at 10 hz. Since this value is smaller than any of the paremeter
error bounds (including the actual error), we are led to lowering the data filter bandwidth.
Reducing from 20 hz to 10 hz results in I /oI = .0144, 6, = .0146, and 62 = .0420
[see Table 2]. The measured bound 61 is smaller than 6

m, and hence, the closed- loop

performance will be satisfactory under these conditions. Now, the actual bound at any
one time could be different, but the robust control design procedure can have an option of
relaxing the performance criterion.
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Fig-ure 11: Plotted against w are IT(e-)M9(eiil for the parameter error values in Fig-
ure 10, and T.(eiw)I.I
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Figure 12: IL(eiwO)I (dashed line) and e(w) (dark line) vs. w.
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6 Bound on Parameter Error from Disturbance

To bound II 'N 11 will require some a priori data about the disturbance sequence Ed. Consider
the special case of Section 5, with (58):

Ed = WFAeod

I The following result is obtained if Ed has a known RMS bound.

Theorem 3 (RMS Bounded Disturbance) Suppose that

I Then: 
( ) / N S d 

(91)

*11thvj :5 O'd (11 (OOT)-l0112) 12(92)

Proof: Direct application of Cauchy-Schwartz and triangle inequalities.

Use of this bound requires prior knowledge of Ud. Rather than producing this value
analytically, since Ed depends only on the true plant and disturbance, it is easier to run
some simulations or perform some experiments.

The effect of the disturbance on the parameter error can be neglected whenever 11ii j < <

ShSI. From Lemma 1, this occurs if (&>g « (4 )N" Using the special structure in (60)
gives:

-~ 2 \ 1/2
2)1/2 .< [.LOT2 )X 121/

N (J ( b,, )1
* 1jb.11 (IIZOII2)1/ 2

1 Jb.11 KIL0112)1N + o (11,r,-)
I xwhere the last line follows from Lemma-DFT in the Appendix. Now if WL satisfies (42),

then for large N and small 77,

I ()N 5 (-rx11b.11 (su WL (e"') I) (110112)1/2 + 0 (1 /v7i) + 0 (77) (93)

Thus, the unmodeled dynamics will be the dominant contributor to parameter error if

* 6("'VN << 11b.11 (spIWL(ejw)l' (94)

11011I2)N \W-flF

An interpretation is that the "noise to signal ratio" (the left hand side above) should beI sufficiently small as determined by the "model error" in the passband (the right hand side
above). 

2
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If the noise is known to be stochastic, then the above results tend to be conserva-
tive, since information is neglected. For example, suppose it has been determined (by
simulations and experiments) that ed is a zero-mean sequence with auto-spectrum

Sld(w,) = o 1H(eJ")I2  (95) 1

where H is a stable and stably invertible spectral factor of the standard form H(q) =

1 + ik=- h(k)q-k [see, e.g., Ljung(1987)]. Hence, Cd is the output of the filter H whose
input is a zero-mean white noise sequence e with variance a.2 Although H and a, are
unknown, suppose they are known to be bounded as follows:

UC < 6,
IWF(e' ')H(eJl <: IH(ej")l, VIw, _< -r,

With this information available, it is more appropriate to use the equation error

ce = H-1WVF(Aoy - Beu) (96)

This leads to the parameter error

=N d~) ( i (97)

E = H-WFH (98)

Hence, in the passband of the data filter e' is effectively zero-mean white noise with
maximum variance &,. Taking expectations with respect to the statistics of e, it follows
that

gr dW T}'Z a2 (O) (99)
Using the above a priori statistical data motivates the bound:

II9N11 <N Il (€€)1 lir/ (100)

This is clearly a tighter bound than that obtained in Theorem 3, which is using much less
statistical data about the disturbance sequence.

3
I
I
I
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7 Discussion

The parameter set estimator developed here can be used either off-line or on- line. Most of
the discussion up to now focuses on one N-point fixed observation interval t E [0, N - 1].
In practice, the scheme would be implemented more or less as follows. First solve the
least-squares parameter estimation problem for a moving N-point observation interval,
say, [t-N + 1, t]. At certain times {t1}, the current parameter set estimate would be used
to update the controller.

There are myriad ways to select the reset times {ti}. As an illustration, let the reset
times be

{ti} = {kN: parameter identifiablity on [1 + (k - 1)N, kN],
control design exists, (101)
parameter set estimate E Oo}

I Parameter identifiability is essentially an information test on the data and is equvalent to
the notion of persistent excitation on the observation interval [ti - N + 1, ti]. If there is

no identifiablity, then we keep recording the data. Even with good data, there is still the
possibility of being unable to use the resulting parameter set estimate because there is no
"numerical" solution for the control design, e.g., whenever there is a near pole and zero
cancellation in the model set estimate. Finally, the estimated parameter set may contain
some parameters which are outside the set of prior information Eo. If this occurs, then
the "outliers" can be projected back into the prior set, or else continue to record data. A
further discussion of projection methods and resetting schemes are dealt with in Goodwin
and Sin(1984) and Bai and Sastry(1987).

Solving the least-squares parameter estimation problem on the moving interval results
in the estimate at ti given by* = (<T) (p) (102)

where 0, z are as previously defined, but now (')i denotes averaging on the moving interval,
i. e.,

1 t,
dW f L x(t) (103)

I The parameter identifiability test is to require that the smallest eigenvalue of (OOT) is
larger than some positive number.

Using this scheme, the adaptive control system can be viewed as an iterative mapping
in parameter space. Specifically, let 6i denote the "new" parameter set estimate at the
end of the ith reset interval [ti- 1, ti], where

, {e0 E0 : 110-, jI <_ (104)

Hence, corresponding to each model set estimate EOi, there is a parameter estimate Oi E %
and a radius of uncertainty 6i. The parameter set estimator produces the sequence of
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"new" parameter set estimates b)i, i ,- 17,2, ... (105)

Correspondingly, we have the sequence of "current" parameter set estimates

0, = EGj 1 , i = 1, 2,... (106)I

where 6)o is an initial estimate.

Using the above relations between "new" and "current" parameter set estimates, we

may conceptually express the adaptation as the iterative mapping:

15i=rib~j i= 1,2.... (107)

The operator ri {-} is a time-varying operator mapping parameter sets into parameter
sets in IR P . In words, the control design rule generates a controller based on the "current"

set estimate )i-1. This controller is fixed during the ith reset interval [ti- 1,ti]. At the

end of this interval, the "current" estimate )i-I is replaced by the "new" estimate Gj,
and the controller is redesigned. Essentially, the "new" estimate is a function of the
"current" ( and now past) estimate as well as the signals present in the closed-loop system

during the ith reset interval. Thus, the operator ri {-} signifies the relation between the
"current" and "new" parameter set estimates. A further discussion and anlysis of the

properties of this operator can be found in Phillips, Kosut, and Franklin(1988). It is

further revealed there that fixed- points of this operator are in fact equilibriums of the

averaged system corresponding to either slow adaptation or least-squares based parameter

adaptive algorithms. What we have essentially shown in this paper is that the fixed points
can be restricted to a set bounded by a priori knowledge about unmodeled dynamics and

disturbances.

I
!
!
I
I
I
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8 Concluding Remarks

We have presented some theoretical results and simulation experiments which give credence
to the use of a parameter set estimator in an adaptive control scheme where the on- line
design rule is prepared to accept uncertainties of the same form. The main result shows
that with a sufficient but reasonable amount of a priori information, the parameter set
estimator can always capture the true system. To make the range of uncertainty as small
as is required by control design specifications will necessitate an appropriate choice of
identification experiment design variables, such as data filters, and input spectrum.
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A Appendix

A.1 Preliminaries

We first state some preliminary definitions and results. I

Definition: The discrete-Fourier-transform, or DFT, of a sequence {f} on t E [0, N - 1] I
i3 defined as 1N-1

FN(w) = DFTf}I = -y E f(t)e- t ,
t=O

where QN are the DFT frequencies I

QjV =-- -: k E [0,N - 1]}

The DFT admits an inverse transform, or IDFT, such that

f(t) = IDFT{F N} = E FN(w)ejwt , tE[0,N-1]
wEQN

Outside of the interval [0, N - 11, f(t) 7 IDFT{FN} in general, unless f is N-periodic.

We use the notation fN to denote the N- periodic extension of f which is defined for all

t E (-o o, co) by

fN(t) = FN(w)e 'wt

Observe that for t E [0, N - 1],fN(t) = f(t). An immediate consequnce of the above

definitions is

Theorem 4 (Parseval's Theorem)

1 N-1
(T)V E ZX(t)YT(t) = ENXN(W)YN~)

The next result shows how DFT's are transformed by stable linear systems. The result as

stated is a slight modification of Theorem 2.1 in Ljung(1987), and for this reason a proof I
is presented. A similar result can also be found in LaMaire et al. (1987).

Lemma 2 (Linear Transformation of DFT) Let {y,u : t = ,...,N - 1} denote se- I
quences with DFT's YN(w), UN(w) for w E !ZN. Suppose that

y=Gu I
where G is a stable transfer function whose pulse response sequence I{g) satisfies

g(t)j < M , Vt > 0
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for constants M > ,p jo (0, 1). Then: M ( '
!YN(w) - G(ejW)UN(W)1I SUP IU(t) - UN(t)t'(M i..N

* E(-oo,-I] ) ( (1 - ),

- where {UN(t)} is the N-periodic extension of u(t), that is,

UN(t) = Z UN(w)edwt, t E (-oo, oo)I jEi2N
If u(t) is N-periodic, then
* Yv(w) -G(ejw)UN(w)

Proof:-

For t E [0, N- 1], we have

IY(t) = >j g(t -k)u(k)
k=-co

U=k=-00o=
= jg(t - k)u(k) + Z g(t - k)uN(k) - 9 (t -k)UN(k)Uk=-oo k=-00 k=-oo

t -1

E g(t - k)UN(k) + Z: g(t - k)[u(k) - uN(k)I
k=-oo k=-co

From the definition of the DET,

YN(w) = G(ejw)Ujv(w) + RN(w)

where RN(W) =e-' _ g(t - k)[u(k) - tLN(k)])

Thus,

IRN (W)I SU N t(-o,- - UN =~ E =-F, Ig(t - k)I

N- -i

SU sup I(t) -UN(t)IL F,1: p-
NtE(-00,-l t=O k=-oop~

SU sup u(t) - UN(t)IM ( N) ( - )
E( N= t)((k=-00

*This completes the proof. C'I -

From the above Lemma we obtain:
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Corllary 2 Let f{y,u :t E [0, N - 1]} have respective DFT's f{YN, UN :w E fnN} Let G
be a stable transfer function whose pulse response sequence {g} satisfies

Ig(t)I < Mpt , Vt > 0

for constants M > 0, p E (0, 1). Then:

(y(Gu))N = E YN(w)[G(eiw)UN(w)]* + eN I
wEllN

where leNt 1M SE(ON1U iE(- -] U(i N) ( p

,u-t1 p(- ju,-l t - N ('-
with UN(t) the N-periodic extension of u(t). I
A.2 Proof of Theorem 1 I
We start with the expression for parameter error from Lemma 1, i.e.,

N = (¢O,,A = (O(WFAAY)}), + (O(WFABU))N

where we have defined ( 1 } 4(F~)N+(1WAu)

Applying the previous lemma and corollary to each term gives: I
jA= - E [VVF(ejw)LAA(eiw)YN(W)*lIJN(W) +E~ [WF(ejW')AB(eI)Uj(w)j*TIN(W) + eN

wEON WEflN

where1

w h e r e N (W ) = ( 0 0 %) 4 'N ( )

with P8 as defined in the Theorem. Under the assumptions of the theorem, namely the

known frequency bounds on AB(e j -) and AA(ejw), the indicated bound (37) follows. _

Ovserve also that

sup{ll E [WF(ejw)AA(eJw)YN(w)]*PIV(w)II : IAA(eiw)l < IWA(eiw)I} = I1YAll I
wEON

Thus, the bound (37) is asymptotically (in N) tight. This completes the proof. I
I
I
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